Erratum to ‘Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams’†
نویسندگان
چکیده
The authors attempt to establish the relative biological effectiveness (RBE) calculation for designing therapeutic proton beams on the basis of microdosimetry. The tissue-equivalent proportional counter (TEPC) was used to measure microdosimetric lineal energy spectra for proton beams at various depths in a water phantom. An RBE-weighted absorbed dose is defined as an absorbed dose multiplied by an RBE for cell death of human salivary gland (HSG) tumor cells in this study. The RBE values were calculated by a modified microdosimetric kinetic model using the biological parameters for HSG tumor cells. The calculated RBE distributions showed a gradual increase to about 1cm short of a beam range and a steep increase around the beam range for both the mono-energetic and spread-out Bragg peak (SOBP) proton beams. The calculated RBE values were partially compared with a biological experiment in which the HSG tumor cells were irradiated by the SOBP beam except around the distal end. The RBE-weighted absorbed dose distribution for the SOBP beam was derived from the measured spectra for the mono-energetic beam by a mixing calculation, and it was confirmed that it agreed well with that directly derived from the microdosimetric spectra measured in the SOBP beam. The absorbed dose distributions to planarize the RBE-weighted absorbed dose were calculated in consideration of the RBE dependence on the prescribed absorbed dose and cellular radio-sensitivity. The results show that the microdosimetric measurement for the mono-energetic proton beam is also useful for designing RBE-weighted absorbed dose distributions for range-modulated proton beams.
منابع مشابه
Microdosimetric relative biological effectiveness of therapeutic proton beams.
When compared to photon beams, particle beams have distinct spatial distributions on the energy depositions in both the macroscopic and microscopic volumes. In a macroscopic volume, the absorbed dose distribution shows a rapid increase near the particle range, that is, Bragg peak, as particle penetrates deep inside the tissue. In a microscopic volume, individual particle deposits its energy alo...
متن کاملValidation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy
The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet...
متن کاملEvaluation of the relative biological effectiveness of the Auger electrons produced during gadolinium neutron capture therapy using microdosimetric approach
Determination of the relative biological effectiveness (RBE) of Auger electrons is a challenging task in radiobiology. In this study, we have estimated the RBE of internal conversion (IC) and Auger electrons released during Gadolinium neutron capture reaction (GNCR) by means of biological weighting functions (BWFs) with microdosimetric approach. Regarding the different distribution of Gadoliniu...
متن کاملEvaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملAnalysis of Relative Biological Effectiveness of Proton Beams and Iso-effective Dose Profiles Using Geant4
Background: The assessment of RBE quantity in the treatment of cancer tumors with proton beams in treatment planning systems (TPS) is of high significance. Given the significance of the issue and the studies conducted in the literature, this quantity is fixed and is taken as equal to 1.1.Objective: The main objective of this study was to assess RBE quantity of proton beams and their variations ...
متن کامل